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Generalized Taylor dispersion theory is used to study the chaotic laminar trans- 
port of a reactive solute between eccentric rotating cylinders in the presence of an 
inhomogeneous chemical reaction. The circumstance considered is that of laminar 
axial ‘Poiseuille’ flow in the annular region between the two non-concentric cylinders, 
accompanied by a secondary, generally chaotic, flow induced via alternate rotation 
of the cylinders. A Brownian tracer introduced into the flow is assumed to undergo 
an instantaneous, irreversible reaction on the surface of the outer cylinder. The 
resulting effective transversely and time-averaged reaction rate, axial solute velocity, 
and axial convective dispersivity are computed. When chaos is present, the effective 
reaction rate is increased to a value several times larger than occurs in the absence 
of chaotic transport. I t  is found that an optimum alternation frequency exists, and 
that this frequency decreases with increasing transverse Peclet number (Pe,) .  It is also 
observed that the maximum achievable reaction rate increases with Pe,. The effect of 
laminar chaotic mixing on the mean axial solute/solvent velocity ratio is to drive its 
value towards the perfectly mixed value of 1.0, despite the removal of solute from the 
slower-moving axial streamlines near the outer (reactive) cylinder wall. Lastly, in the 
presence of transverse chaotic transport, the convective Taylor contribution to the 
axial solute dispersivity acquires a value up to several orders of magnitude smaller 
than that achievable by means of non-chaotic convection. 

1. Introduction 
Much attention has been paid to the use of chaos as a possible mechanism for 

the enhancement of laminar mixing processes (Ottino 1990; Ottino et al. 1992; Aref 
& Balachandar 1986; Swanson & Ottino 1990). These studies rely heavily on the 
Poincare section as a diagnostic to measure the extent of mixing. As pointed out by 
Swanson & Ottino (1990), however, these diagrams are subject to misinterpretation; 
nor do they provide any rate information. 

The above-cited studies focus on measuring the extent of mixing possible in a 
chaotic convective flow field, neglecting any effects arising from molecular diffusion. 
Relatively few studies of the enhancement of transport rates by laminar chaos exist. 
Jana & Ottino (1992) studied heat transfer in a chaotic cavity flow. They considered 
the approach to equilibrium of an initially isothermal fluid which is perturbed by a 
step change in the wall temperature, and found significant enhancement in the rate 
of heat transfer in circumstances for which chaotic transport is present. The net 
heat transfer rate exhibited a strong dependence on the Peclet number ( P e ) ,  having 
a maximum at intermediate values of Pe. Ghosh, Chang & Sen (1992) investigated 
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heat transfer between rotating eccentric cylinders when the cylinders are held at a 
different temperatures. Although their work was limited to small eccentricities and 
small oscillations superposed on an otherwise steady rotary flow, conditions under 
which chaotic transport would be expected to be small, they nevertheless found a 
significant increase in heat transfer occurring in circumstances where chaotic transport 
was present. 

Jones & Young (1994) studied shear dispersion in a twisted pipe for circumstances 
wherein chaotic particle trajectories were present. Previous studies of dispersion in 
curved tubes, involving regular non-chaotic particle trajectories (Nunge, Lin & Gill 
1972; Janssen 1976; Johnson & Kamm 1986), found that the secondary flow induced 
by tube curvature acted to decrease the convective dispersion by a factor of up to five 
below that occurring in a straight tube under comparable conditions. Jones & Young 
(1994) concluded that the presence of chaotic advection decreases the axial dispersion 
to an even larger extent than does regular secondary flow, changing the dependence 
of the dispersivity upon the Pklet number from the classical Pe2 behaviour (Taylor 
1953) to PelnPe.  

The present work utilizes Taylor dispersion theory for time-periodic chemically 
reactive systems (Shapiro & Brenner 1990) to assess the effect of laminar chaos on 
both transverse and axial solute transport rates. The situation considered is that of 
net axial annular flow taking place between eccentric cylinders which are alternately 
rotated. This flow has been studied both experimentally and computationally by 
Kusch & Ottino (1992). In addition, flow between rotating eccentric cylinders (in the 
absence of axial flow) has been studied extensively as a simple example of a system in 
which the phenomenon of laminar chaos occurs under well-defined conditions (Aref 
& Balachandar 1986; Chaiken et al. 1987; Swanson & Ottino 1990; Kaper & Wiggins 
1993). A Brownian tracer particle, likened to a diffusing solute molecule, is assumed to 
undergo instantaneous irreversible reaction on the outer cylinder surface? following 
its initial introduction into the annular space between the cylinders. A global, purely 
axial, transversely and time-averaged description of the resulting reactive transport 
process is sought and ultimately found. In particular, the effective reaction or wall 
deposition rate, mean axial solute velocity, and axial dispersivity are computed. Since 
the deposition is assumed instantaneous, its rate is limited by the transport of solute 
to the wall rather than by the true kinetics of the reaction or deposition process. 
Hence, the effective reaction rate furnishes a quantitative global measure of the 
transport effectiveness in a given secondary (i.e. transverse) flow field. The convective 
or Taylor contribution to the axial dispersivity also depends on the lateral transport, 
varying inversely with molecular diffusivity in a purely axial flow. Thus, the effect of 
any enhancement in the net transverse transport is to decrease the axial dispersion, 
whence the latter also furnishes an additional, independent measure of the transport 
effectiveness of a given chaotic flow field. 

2. Geometry and flow 
Consider an infinitely long circular cylinder of radius Ri positioned non- 

concentrically within another, larger cylinder of radius &, their centres being sepa- 
rated by a distance E (figure l). (Throughout, subscripts i and o represent the values of 

t We will on occasion refer to this instantaneous irreversible process as ‘deposition’, having in 
mind the model of a Brownian aerosol or hydrosol particle being deposited on the outer wall and 
held there permanently (Shapiro & Brenner 1986; Shapiro, Kettner & Brenner 1991). 
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FIGURE 1. Eccentric cylinders. Bipolar coordinates. 

the functions to which they are affixed on the inner and outer cylinders, respectively.) 
A point within the eccentric annular space bounded by the two cylinders will be 
denoted ( z ,  q),  with z the axial position parallel to the cylinder axes, and q = q ( y ,  5) 
the ‘local’, transverse position vector in the plane perpendicular to the z-axis. Here, 
y and 5 are cylindrical curvilinear coordinates, explicitly bipolar coordinates in the 
present context (Happel & Brenner 1983). 

A transverse flow is produced by rotating the inner and outer cylinders alternately, 
each for the same period T at the respective angular velocities Oi and 0,. The 
secondary, local-space velocity field is then given by 

(2.1) 
2nT < t < (2n + 1)T, 

u(qTt) = { tftj, (2n + 1)T < t < 2(n + 1)T 

( n  = 0,1,2, ...), where u, and u, are the quasi-steady Stokes-flow bipolar-coordinate 
velocity fields (Ballal & Rivlin 1976) respectively resulting from rotation of the inner 
and outer cylinders. The quasi-steady assumption is valid provided that the period 
of modulation T is large compared with the viscous time scale L2/v, where L is a 
characteristic length, say & - Ri, and v the kinematic viscosity. The assumption of 
Stokes flow is justified provided the Reynolds number Re = R2Q2/v is less than unity 
(San Andres & Szeri 1984). 

In addition to the unsteady two-dimensional transverse flow produced by the 
rotation of the cylinders, a steady laminar axial flow U = i zU(q )  is superposed. This 
Poiseuille-like bipolar-coordinate flow field is given by Snyder & Goldstein (19654, 
among others (Piercy, Hooper & Winney 1933). 

3. Probability density transport 
Consider an effectively point-size Brownian solute particle introduced at time t’ 

into the flow U + u occurring between the two eccentric cylinders. The particle will 
be assumed to undergo transport by convection and diffusion in the annular space 
while undergoing instantaneous, irreversible deposition on the outer cylinder. Let 
P s P ( z ,  q, tlq’, t’) denote the conditional probability density that the tracer is located 
at the point (z ,q )  at time t ,  given that it was initially introduced into the fluid at 
the point (0,q’) at time t’. This probability density is governed by the following 
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boundary-value problem : 

a p  a p  a2p 
at ( a z 2  
- + U ( q ) z  + u(q, t )  * V,P - D __ + V i P )  = S(z)S(q - q’)S(t - t’), (3.1) 

P = O  on dqo, ( 3 4  

n*V,P = 0 on dq,, (3.3) 

lzlmP + 0 as z -+ fcc (m  = 0,1,2 ,... ). (3.4) 
Here, D is the molecular diffusivity, V, the local-space (two-dimensional) gradient 
operator, n the unit normal vector, and dqa a point lying on the surface of a circular 
cylinder, qa = constant (a = i ,o). Boundary condition (3.2) is a consequence of 
the instantaneous irreversible solute deposition on the outer cylinder, while (3.3) 
represents the condition of no flux through the inner cylinder wall. Equation (3.4) is 
necessitated by the requirement that the probability density be bounded as IzJ -+ 00 
in such a way that the axial moment integrals 

1: z”Pdz (3.5) 

implicit in the subsequent theory converge for all non-negative integers m and for 
all local points q E qo, in which qo represents the two-dimensional annular domain 
(0 d < < 2n, qo d q d qi) lying perpendicular to the axes of the cylinders, q i  and qo. 

4. Global, axial transport description 
A macroscale description of the transport processes outlined above may be obtained 

through application of the time-periodic moment-matching scheme described by 
Shapiro & Brenner (1990). This method allows the calculation of mean transport 
coefficients which are independent of the exact initial conditions, thus providing global 
information about the transport processes and eliminating the necessity of performing 
a separate calculation for each new set of initial conditions. 

Define the time- and transverse-position-averaged conditional probability density 

( P ) ( z ,  t)q/ ,  t’) = - 2T r2’ lo P ( z ,  4, ttd, t’)dq dt. (4.1) 

Here, the transverse average of a function f ( z ,  q, t )  is defined as 

whereas 

denotes the time-average of the function over one period, 2T. For asymptotically 
long times (I‘)  obeys the following one-dimensional system of macroscale, axial 
convection-dispersion-(first-order, irreversible) reaction equations (Shapiro & Bren- 
ner 1990): 

(4.5) 1zlm(I‘) - + O  as z + +a. 
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The macroscale phenomenological coefficients K *, U * ,  and D* respectively represent 
the effective solute reaction-rate constant, axial velocity, and axial dispersivity. These 
axial position- and time-independent constants are given in terms of quadratures of 
the microscale phenomenological and geometric data by the expressions 

and 

where 

K' = K, (4.6) 

D' = D + Df, 

is the Taylor (i.e. 'convective') contribution to the axial dispersivity. Here, the local- 
space Po" and A fields together with the reactivity coefficient K are found from the 
following adjoint pair of transverse-space eigenvalue problems : 

(4.10) 
ap? 

at 
~ + u * V,PF - DV:PP - K P: = 0, 

L 
2T lo P$dq dt = 1 ; 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

and 

(4.15) 
dA 

~ + u * V,A + DV:A + K A  = 0, 
a t  

(4.16) 

(4.17) 

(4.18) 

lo PFAdq = 1. (4.19) 

The B field required in the determination of D* represents the solution of the following 
boundary-value problem : 

+ u-V,(BP,") - DV:(BP,") - KBP," = P,"[U(q) - U " ] ,  (4.20) 

BPF = 0 on aq,, (4.21) 

n.V,(BPT) = O  on aqi. (4.22) 
The term appearing on the right-hand side of (4.4) represents a 'fictitious' initial 

condition, which differs from the true, delta-function initial condition by the factor 
A(q',t'). The need for such a fictitious initial condition arises from the fact (Shapiro 
& Brenner 1990) that the macroscale equation (4.4) is valid only for asymptotically 

d(BP,") 
a t  
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long times, and hence does not accurately describe the transport occurring at short 
times. Use of a fictitious initial condition corrects for this 'anomalous' behaviour 
by properly accounting for the solute transport and reaction occurring prior to the 
time at which the macroscale equation (4.4) becomes applicable. As a result of this 
initial condition, ( P )  depends upon both the initial transverse position q' and the 
initial time t' (the latter through the combination t - t'), although the macroscale 
phenomenological coefficients K*, U * ,  and D* appearing in (4.4) are independent of 
the initial conditions. The value of A(q',t') may be used to determine the utility of 
the present asymptotic analysis. In instances in which most of the solute has already 
been consumed by chemical reaction prior to this asymptotic analysis becoming 
valid, A(q',t') will be extremely small and the distinction between a small amount 
of solute remaining and zero residual solute will be negligible from a practical point 
of view. In other instances, such as when the solute is initially introduced in a 
region relatively distant from the reactive wall, A(q',t') will be close to unity. Thus, 
our macroscale analysis will possess greater utility in practical applications. However, 
practical considerations aside, our analysis nevertheless provides a simple quantitative 
measure of the effectiveness of laminar chaos in enhancing the transverse transport 
rate. 

Introduce the dimensionless variables 

in which 
ii = a,& 

is the circumferential velocity of the outer cylinder, and 

40 

(4.24) 

(4.25) 

is the average axial solvent velocity. (The denominator of (4.25) is simply the 
cross-sectional area n(R; - 42) of the annular domain.) This yields the following 
non-dimensional system of differential equations governing the fields @,", A, and 6: 

(4.26) " 2  a@ A h  

- + Pe,u^- V , P ~  - V,P, - K P ?  = 0, az 

(4.27) 
aA 
- + Pe,li ?,A + + I ~ A  = 0, 
a7 

which are to be solved subject to the boundary conditions given by (4.1 1)-(4.14), 
(4.16)-(4.19), and (4.21)-(4.22), respectively, with B replaced by and Po" by P,". In 
addition, for the macroscale coefficients, one obtains 

(4.29) 
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and 

in which Y = T O / % .  The relevant parameters to be investigated in quantifying K', 
U * ,  and 0: are thus Pe,, Y, and Q,/Q,, in addition to the geometric factors R,/& 
and (dimensionless) eccentricity e = E / ( &  - Rl) .  

5 .  Solution scheme 

Damkohler number for the reaction - define the field &(q, t )  as follows: 
In order to facilitate determining the eigenvalue K - representing the effective 

PI; (4, t) = p:(q, t) exp(K-t). 

From (4.26), the p c  field is thus governed by the relation 

whereas the equation for the 6 field becomes 

In terms of the new variables, K is now given by 

PZ(4, + 2Y)dq 1 
K = - lim '" - 2Y In ['.i&(q,t)dq 1 

Similarly, upon replacing A by 

A(4,  z)  = 44, z) exp(-K-z), 

the new field a obeys the equation 

5) V (5 .3)  

(5.4) 

The trio of boundary-value problems posed in the preceding paragraph were solved 
sequentially. Spatially uniform initial conditions were imposed upon each of the above 
three functions and calculations carried out until each attained its asymptotic, time- 
periodic behaviour, which was independent of the arbitrarily chosen initial conditions. 
In order to avoid instabilities associated with (5.6), a new time variable 8 = -7 was 
introduced, yielding the following stable equation for a(q, #): 

This equation is identical to that governing the p i  field, with the exception of the 
algebraic sign of the convective term. Owing to the symmetry of the problem, it 
was not necessary to solve for the a and p$ fields separately. Rather, the u field 
was obtained by inverting the p,$ field about the axis joining the centres of the two 
cylinders while reversing its time dependence. 
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FIGURE 2. Dependence of the ratio of the effective Damkohler number K to its value KO at zero 
eccentricity and in the absence of transverse flow on the dimensionless eccentricity E for R,/& = 0.3: 
(i) no transverse flow; (ii-iv): Pe, =, 5000, 52,/52, = 6, with (ii) outer cylinder rotation; (iii) inner 
cylinder rotation; (iv) alternate rotation, I" = 0.001. 

The equations were explicitly written in bipolar coordinates (y, 5 )  and subsequently 
solved by an implicit finite-difference method. All the calculations utilized a radius 
ratio value of Ri/& = 0.3, while the other parameters were varied over appropriate 
ranges. First, the eccentricity was varied over its entire range (0 < c < l), from the 
concentric- to the tangent-cylinder case. Pe, was varied over the range zero to lo6; 
large transverse Piclet numbers are of particular interest because species possessing 
small molecular diffusivities experience extremely small effective reaction rates in the 
absence of transverse convection, thus making lateral transport enhancement essential 
in attempting to achieve more rapid reaction rates. In addition to varying Pe,, which 
is equivalent to varying the angular velocities of both cylinders, we also studied the 
effect of the angular velocity ratio sZi/sZ,, including distinguishing between co-rotating 
cylinders (52,/0, > 0) and counter-rotating cylinders (52,/52, < 0). Varying this ratio 
over a range similar to that employed for Pe, allowed us to assess the effect of varying 
the velocity of the inner cylinder, while holding the velocity of the outer cylinder fixed. 
Finally, the alternation period Y was varied over the range to 1, respectively 
corresponding to very rapid oscillation and to a period equal to the diffusion time. 

6. Results 
6.1. Reactivity coeficient 

Figure 2 illustrates the dependence of the effective reaction-rate coefficient on the 
eccentricity, while figure 3 shows representative streamlines for these flow conditions. 
Figure 2 reveals that in the absence of any flow (curve i), the net deposition rate 
decreases slightly with increasing eccentricity. This simply reflects the increasing 
average distance that a particle must travel in order to reach the reactive outer wall. 
Rotation of the outer cylinder singly (curve ii) leads to only a modest increase in 
the reaction rate over that in the absence of transverse flow. This increase is due 
to the separation occurring on the inner cylinder (see figure 3a), which serves to 
transport the reactive species from the area adjacent to the inner cylinder to the 
central region, thereby increasing the gradient driving the diffusion towards the outer 
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FIGURE 3. Streamlines for R,/R,, = 0.3, 6 = 0.5: (a) outer cylinder rotation, 
( b )  inner cylinder rotation. 

wall. In comparison with the preceding case of rotation of the outer cylinder, a much 
more dramatic increase in the deposition rate is observed when the inner cylinder is 
rotated singly (curve iii). This is a consequence of the location of the separation point. 
When the inner cylinder is rotated, separation occurs at the outer, reactive wall (see 
figure 3b). Thus, the effect of the separation is to transport species from the central 
portion of the annulus to the region very close to the reaction site, greatly enhancing 
the effective reaction rate. 

The remaining curve displayed in figure 2 (curve iv) represents a situation in 
which the cylinders rotate alternately - circumstances for which chaotic advection 
has been shown to occur (Aref & Balachandar 1986; Chaiken et al. 1987; Swanson 
& Ottino 1990). When each cylinder is successively rotated for a period Y = 0.001, 
the deposition rate attains a value above that which could be achieved solely from 
rotation of the inner cylinder alone (curve iii). This clearly demonstrates the transport 
enhancement occasioned by laminar chaos for this set of parameters. Comparison 
of the Poincare sections (figure 4) for these parameters with the resulting deposition 
rate shows that while there is some relationship between the Poincare sections and 
the deposition rate, the conclusions drawn from these diagrams may be different than 
the calculated results. For instance, a large island is present in the Poincare section 
for e = 0.7, suggesting that the mixing achieved in this geometry is less effective than 
that for either E = 0.3 or f = 0.5, where the only regular regions occur in thin bands 
close to the outer cylinder. In contrast, the calculated results show that the effective 
reaction rate for E = 0.7 is only slightly smaller than that for E = 0.5 and is, in fact, 
larger than that for E = 0.3. 

The effect of the alternation period Y on the deposition rate is illustrated in figure 
5. It is seen that an enhanced deposition rate, over that attained by simply rotating 
the inner cylinder continuously, occurs only over a limited range of frequencies, 
a result similar to that observed by Ghosh et al. (1992) in their study of heat 
transfer. The increase observed in the deposition rate with switching period for 
small periods may be explained by examining the Poincare sections for these flow 
conditions (figure 6). There is a dramatic increase in the extent of the chaotic regions 
at the smallest periods (compare figures 6a and 6b). For longer periods, no such 
explanation is possible, since here the extent of chaotic regions is comparable to 
that present at the optimum alternation period. One possible explanation is that for 
these longer switching periods it takes longer for a comparable amount of mixing 
to occur, thus decreasing the effective reaction rate. Another possibility is that when 
molecular diffusion is present, very long switching periods allow sufficient time for 
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FIGURE 4. Poincark sections for alternate rotation, with RJR, = 0.3, Pe, = 5000, and Y = 0.001 
(a)  e = 0.1, ( b )  E = 0.3, (c)  E = 0.5, ( d )  e = 0.7, (e) e = 0.9. 

diffusive transport to establish a pseudo-steady state during each half of the cycle, 
corresponding to that which occurs when one cylinder rotates continuously. The net 
rate of transport to the outer cylinder is thus (approximately) simply the average of 
the respective rates attained when each cylinder is rotated individually. 

Figure 7 displays the dependence of deposition rate on transverse Peclet number. 
In the absence of diffusion, Aref & Balachandar (1986) and Chaiken et al. (1987) 
observed that the extent of mixing depends only on the products SZiT and Q2,T (i.e., 
the angular distances travelled by each cylinder during one period) rather than on 
the angular velocity and switching period individually. Here, the rate depends on 
each of these parameters separately, as can be seen by comparing figures 5 and 7, 
which would be the same if the rate depended only on the total distance travelled 
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-u Outer cylinder rotation 

Y 
FIGURE 5. Dependence of the effective Damkohler number IC on the alternation 

period Y for R,/&, = 0.3, E = 0.5, 0,/0, = 6, Pe, = 5000. 

FIGURE 6. Poincark sections for alternate rotation, with RJR0 = 0.3, Pe, = 5000, 
and E = 0.5: (a)  Y = 0.0001 ( b )  Y = 0.001 (c) Y = 0.01 

229 

< during each period. It is seen that for Pe, - 500, the deposition rate for alternate 
rotation falls into the envelope between the respective rates attained for continuous, 
single-cylinder rotation. For large Peclet numbers the deposition rate reaches an 
asymptotic value 1.3 times that attained by rotating only the inner cylinder, and 2.5 
times that achieved in the complete absence of convection (Pe, = 0). 



230 M .  D. Bryden and H .  Brenner 
20 

Alternate rotation 

K 10 

0 '  I I I I I 

loo 10' lo2 lo3 lo4 lo5 lo6 

Pe, 
FIGURE 7. Dependence of the effective Damkohler number K on Peg for Ri/& = 0.3, 

E = 0.5, Q i / Q ,  = 6, Y = 0.01. 
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FIGURE 8. Dependence of the effective Damkohler number K on the angular velocity 
ratio Qi/Q,  for R,/& = 0.3, E = 0.5, Peg = 1000, Y = 0.01 

Figure 8 depicts the effect of varying the angular velocity Qi of the inner cylinder, 
while keeping constant both the switching period I" and the angular velocity s2, of the 
outer cylinder. Comparison of these results with those observed when the velocities of 
both cylinders are varied (figure 7) shows that the asymptotic limit for the deposition 
rate is independent of the angular velocity of the outer cylinder. Moreover, the 
value of the parameter Pe,s2i/Q2, at which the deposition rate in the presence of 
chaotic mixing first exceeds that achieved through rotation of the inner cylinder 
alone is independent of whether the angular velocity of only the inner cylinder or 
the angular velocities of both cylinders are varied. It thus appears that for large 
Pkclet numbers the rotation rate of the inner cylinder alone controls the deposition 
rate. This is physically reasonable, since it is the rotation of the inner cylinder that 
creates a separation region near the outer (reactive) wall. Rotation of the outer 
cylinder contributes little to the enhancement of the deposition rate on its own, but in 
combination with alternate rotation of the inner cylinder it serves to transport solute 
particles from areas lying outside of the separation region to the area of separation, 
where the local deposition rate is higher. Also investigated was the effect of rotating 
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FIGURE 9. Dependence upon Pe, of the alternation period at which the maximum effective 

Damkohler number is achieved, with R, /& = 0.3, E = 0.5, s Z , / Q ,  = 6. The slope of the line is -1.0 

the cylinders in opposite directions rather than in the same direction (i.e. negative 
values of SZ,/Q,). In the absence of diffusion, Poincare plots indicate that better 
mixing is achieved with co-rotating cylinders than with counter-rotation (Chaiken et 
al. 1987). A similar result was seen here. For example, an effective Damkohler number 
of 19.05 occurs for Pe, = 5000, Y = 0.001, E = 0.5, and s Z i / Q ,  = 6 (co-rotation) 
versus a value of 9.20 for the equivalent counter-rotation case. 

The period Y,,, for which the maximum deposition rate occurs is shown in figure 
9. This optimum period is given by Y,,, = CPe,' (where C is a constant) - at 
least for large Pe,, equivalent to small diffusivities. This trend is consistent with the 
observation in the absence of diffusion that the extent of mixing depends only on the 
angular distance travelled during each period. However, the maximum deposition rate 
K , , ~  attainable depends upon Pe,, increasing with increasing Pe,, as seen in figure 
10. While the extent of chaotic mixing is the same in each of these instances, the rate 
at which the mixing occurs varies with Pe,. In the purely deterministic case the rate 
would vary linearly with angular velocity, but here, with diffusion present, the rate of 
increase is lessened, with the deposition rate varying approximately as Pet25. 

6.2. Ejyective axial velocity 
Figure 11 illustrates the dependence of the mean axial solute velocity upon Pe, for 
6 = 0.5. For small Pe, the average solute velocity U' exceeds the mean annular 
'Poiseuille' velocity V of the solvent for both continuous rotation of a single cylinder 
and successive alternate rotation of both. This is a consequence of the fact that 
the reaction at the outer cylinder removes solute from the slowest-moving axial 
streamlines, so that the only solute molecules to survive the trip downstream - and 
hence reach the exit of the system, where they are monitored - are those that have 
preferentially sampled the (faster-moving) axial streamlines existing near the centre of 
the annular space. As Pe, is increased, the mean solute velocity decreases significantly 
for situations in which only the inner cylinder is rotated. In this circumstance, the 
recirculating flow near the reactive outer cylinder transports solute from some of 
the faster-moving axial streamlines to the reaction site, thereby decreasing the solute 
concentration along the faster streamlines, and hence reducing the average solute 
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FIGURE 10. Dependence of the maximum achievable Damkohler number upon 
Pe,, with Ri/& = 0.3, E = 0.5, sZi/sl, = 6. 

velocity below that of the passive solvent carrier. In the case of rotation of the 
outer cylinder alone, u*exceeds V for all Pe, because, as is true for small Peq, 
the solute is preferentially removed from the slower-moving streamlines. When the 
cylinders are rotated alternately with a period of Y = 0.01, the velocity ratio o*/v 
falls between the values for each of the cylinders rotating individually, ultimately 
attaining an asymptotic value of 1.1 for very large Pe,. From these data it cannot be 
unequivocally established whether laminar chaos is the cause of the effective solute 
velocity approaching the perfectly mixed value of 1.0, or if rotating the cylinders 
alternately is simply causing this velocity to adopt a value intermediate between those 
attained by rotating each of the cylinders individually. 

The transverse Piclet number dependence of the axial solute velocity at the optimum 
alternation period is illustrated in figure 12. For large Pe,, the alternation period 
that maximizes the effective reaction rate is also the period at which the normalized 
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FIGURE 12. Effective solute velocity at the optimum rotation period, with R,/& = 0.3, 
e = 0.5, and Q,/Q, = 6. 
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FIGURE 13. Dependence upon eccentricity of the ratio of the convective contribution of to the 
dispersivity to its value (D:)o for concentric cylinders in the absence of reaction and transverse flow, 
with R,/& = 0.3, Pe, = 5000 and Q,/Q, = 6. 

solute velocity is closest to unity. For smaller Pe,, the optimums differ only slightly 
from one another. In this figure, as in figure 11, the effective velocity when laminar 
chaos is present again lies between those for the individual single cylinder rotations, 
but here it is clearer that the effect of chaotic transport is to cause O * / v  to approach 
the perfectly mixed value of 1.0. 

6.3. Convective d ispersivity 
Figure 13 portrays the dimensionless convective contribution "/(")o to the disper- 
sivity, in which (D: )o represents the convective or Taylor dispersivlty occurring for 
the case of concentric cylinders and in the absence of transverse flow. The diminution 
of solute concentration along the slower-moving streamlines resulting from reaction 
at the outer wall causes the dispersivity in the absence of transverse flow to be 
less than that observed by Sankarasubramanian & Gill (1971). In both that and 
the present work the dispersivity increases markedly as the eccentricity is increased. 
This phenomenon is caused by the increasing gradients arising in the axial velocity 
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FIGURE 14. Dependence of the normalized convective Taylor contribution to the dispersivity upon 

Pe,, with RiIR, = 0.3, e = 0.5, and Oi/Q,  = 6. 

profile with increasing eccentricity. The presence of steady transverse convection, as 
embodied in the pair of curves for the respective individual rotations of the inner and 
outer cylinders, acts to suppress most of this increase by allowing a solute particle 
to cross-sectionally sample the axial streamlines more rapidly. As evidenced by the 
Y = 0.001 data, the effect of laminar chaos is to further decrease the convective 
dispersion as a consequence of the enhanced transverse transport. 

The Pe, dependence of the convective dispersivity for E = 0.5 is shown in figure 14. 
At large Pe,, when the cylinders are rotated alternately (Y = 0.01), the dispersivity 
achieves only about 5% of the value arising in the complete absence of rotation, and 
only one-half of the value attained when the inner cylinder is rotated continuously. 
For uniform rotation of the inner cylinder, as well as for alternate rotation of both 
cylinders, the Taylor dispersivity increases with Pe, for small Piclet numbers, then 
subsequently decreases with further increases of Pe,, as expected. This initial increase 
is caused by an enhancement in the probability of a tracer particle being found on 
one of the slower-moving streamlines, a result of the recirculation existing near the 
outer wall. For larger Pe, this effect is ultimately overcome by the diminished time 
required for a solute particle to cross-sectionally sample all of the axial streamlines. 

The convective dispersivity achieved at the optimum alternation period is displayed 
as a function of Pe, in figure 15. The alternation period that maximizes the reaction 
rate is the same as that which minimizes dispersion for large Pe,. While the disper- 
sivities for continuous rotation of either of the cylinders reach asymptotic values for 
large transverse Piclet numbers, that for alternate rotation at the optimum period 
decays as approximately Pe9°.65. Thus, the dispersivity under these circumstances is 
no longer inversely proportional to D, instead varying as DPe;o.65Pei cc This 
behaviour is consistent with the results of Mezik, Brady & Wiggins (1996), which 
show that the axial dispersivity does not vary inversely with the molecular diffusivity 
when an ergotic transversal flow is present. However, the Pe, dependence in this 
case is different than the PelnPe dependence found by Jones & Young (1994) in the 
‘twisted-pipe’ flow. 
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FIGURE 15. Dependence of the Taylor contribution to the dispersivity a t  the optimum alternation 

period upon Pe,, with R,/& = 0.3, E = 0.5, and S Z , / Q ,  = 6. 

7. Conclusions 
In addition to affecting the three phenomenological macrotransport coefficients 

appearing in the macrotransport equation (4.4), the presence of chaotic advection 
also reduces the length of time required before the asymptotic description of the 
transport process embodied in (4.4) becomes applicable. In the absence of transverse 
convection, this description is valid only for times exceeding a characteristic cross- 
sectional diffusion time, (&-R,)2/D. For species with small diffusivities this restriction 
may be prohibitively long, allowing the solute particle to exit the duct (and hence be 
monitored) before the asymptotic theory described here becomes valid. By enhancing 
the lateral 'mixing' process, the presence of laminar chaos significantly reduces the 
amount of time required to reach this asymptotic state. For example, with the 
arbitrarily chosen spatially uniform initial condition used in our calculations, and for 
the case where rotation is absent and 6 = 0.5, the reaction-rate constant achieved 
a value lying within 1% of its ultimate asymptotic value in a dimensionless time 
interval of z = 0.28 following its introduction. This compares with the very much 
smaller times of 1.2 x lop2 and 1.5 x lop3 required to achieve the same 99% asymptote 
for alternation at the optimum frequency with Pe, = lo4 and lo5, respectively. This 
finding is consistent with the analysis of Jones (1994), which showed that the time 
required for Taylor dispersion to be valid in the chaotic flow in a twisted pipe is 
t >> R/UlnPe rather than t >> R2/D as for non-chaotic flow. 

From the results presented here it is evident that laminar chaotic advection not only 
significantly enhances the extent of mixing of an inhomogeneous fluid, as has been 
previously demonstrated (Aref & Balachandar 1986; Chaiken et al. 1987; Swanson & 
Ottino 1990), but also increases the effective transverse transport rate. In particular, it 
is seen that the deposition or reaction rate may be enhanced at least several-fold over 
that achieved in the complete absence of transverse convection, or when one of the two 
cylinders is continuously and singly rotated. For Pe, = 5000 the maximum reaction 
rate attainable is approximately 2.5 times that obtained for the purely diffusive case, 
or 30% greater than that attainable by rotating the inner cylinder singly (figure 5) .  
For very large Pe,(106), the maximum deposition rate in the presence of laminar 
chaos (figure 10) is nearly five times that achieved solely by steady rotation of the 
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inner cylinder alone (figure 7), the maximum rate achievable by regular, non-chaotic, 
secondary convective transport. 

Lateral transport enhancement is also observed to affect both the mean axial solute 
velocity and convective dispersivity. Explicitly, the effect of chaotic transport is to 
cause the mean value of the axial solute velocity through the annulus to approach that 
of the solvent, despite the selective removal of solute from the slower-moving axial 
streamlines. At the same time, the existence of laminar chaos acts to dramatically 
decrease the Taylor dispersivity by as much as several orders of magnitude over that 
achievable by non-chaotic advection. It was also noted that any change of parameters 
that serves to increase the deposition rate will, in most cases, decrease the dispersivity, 
although this is not always the case. The most notable exception occurs at small 
Peq, where the dispersivity increases with increasing Peq, simultaneously with the 
deposition rate. These differences in behaviour arise from the fact that whereas the 
deposition rate depends exclusively on cross-sectional transport, the axial dispersivity 
depends jointly on both the transverse and axial transport. Therefore, for one seeking 
a computational means of evaluating the mixing effectiveness of a given flow field, the 
deposition rate is the most sensitive of the three possible phenomenological measures 
by virtue of its exclusive dependence on the transverse transport processes. 

Poincart maps, while providing a qualitative view of the extent of chaotic transport, 
as well as a visual image of which regions of the flow are affected by laminar chaos, 
furnish no directly usable engineering design information regarding the transverse 
transport rate (Swanson & Ottino 1990). In contrast, the present work provides 
a quantitative measure of the degree of transport enhancement arising from the 
presence of chaotic advection. In particular, Poincari sections indicate that, in 
general, longer switching periods lead to a greater extent of mixing. Here, it was 
found that an optimum alternation frequency exists with respect to the transport rate. 
Moreover, our analysis incorporates the effect of molecular diffusion, demonstrating 
that even at very large transverse Piclet numbers, the presence of molecular diffusion 
can significantly affect the transport rate beyond that occasioned by convection (i.e. 
laminar chaos) alone, provided that sufficient time is allowed. On a broader theme, 
quantitative understanding of the interaction between molecular diffusion and laminar 
chaos may have important ramifications in elaborating the much debated (Glotefety, 
Taylor & Zoller 1983) role of molecular diffusion in turbulent chaos. 
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